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• Introduction: regression models
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Best-estimate/pure risk premium

• Assume we have independent data points (Yi,xi)
n
i=1 that have been generated by

a fixed but unknown model:

? Yi are the responses (insurance claims), and
? xi are the covariates (features, explanatory variables, independent variables).

• For known data generating model, one can compute the (conditionally) expected
claim of each policyholder with covariates x by

µ∗(x) := E [Y |x].

• µ∗(x) is the true best-estimate/pure risk premium for claim Y of policyholder x.

• For unknown data generating model, one needs to estimate µ∗ from the observed
sample (Yi,xi)

n
i=1.
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Regression model approach

• Problem: Estimate from sample (Yi,xi)
n
i=1 the true regression function

x 7→ µ∗(x) = E [Y |x].

(1) Select a class of regression functions (models)

M =
{
x 7→ µ(x); µ has certain properties

}
,

as candidates to approximate µ∗ (which can be any σ(x)-measurable function).

(2) Solve the minimization problem

µ̂ = argmin
µ∈M

1

n

n∑
i=1

L (Yi, µ(xi)),

for a strictly consistent loss function L for mean estimation; see Gneiting (2011).
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Quality of approximation

• Question: Is the selected model µ̂ ∈M a good approximation to µ∗?

• Generally, this depends on: the properties of µ∗, the selected classM of candidates,
the sample (Yi,xi)

n
i=1, the loss function L and the optimization algorithm used.

• Because the true regression model µ∗ is unknown, this question is analyzed
empirically using out-of-sample data, providing an (independent) empirical
approximation to the true data generating model.

• Popular quality and goodness-of-fit criteria:

? out-of-sample losses (under strictly consistent loss functions);
? Gini indices (under auto-calibration);
? auto-calibration and the balance property;
? conditional T -reliability diagrams and score decomposition.

5



• Auto-calibration and isotonic recalibration
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Auto-calibration
• In a binary context, auto-calibration was used in Hosmer–Lemeshow (1980),

Schervish (1989), Menon et al. (2012), Tasche (2021), and, more generally, in
Tsyplakov (2013), Gneiting–Ranjan (2013), Pohle (2020), Krüger–Ziegel (2021),
Denuit et al. (2021), Fissler et al. (2022), Gneiting–Resin (2022), W. (2023),
Lindholm et al. (2023), W.–Ziegel (2023).

The regression function x 7→ µ(x) is auto-calibrated for (Y,x) if, a.s.,

µ(x) = E [Y |µ(x)].

B Intuitively, this means that every price cohort µ(x) is in average self-financing,

or in other words, there is no systematic cross-financing between different price
cohorts µ(x) 6= µ(x′) within the portfolio.

B Insurance price systems should generally fulfill this important property!
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Empirical testing for auto-calibration

The regression function x 7→ µ(x) is auto-calibrated for (Y,x) if, a.s.,

µ(x) = E [Y |µ(x)].

• Binning (Hosmer–Lemeshow (1980) χ2-test): Build disjoint price intervals (bins)
Ik = [ak, ak+1) and consider (out-of-sample) the average claim in each bin∑n

i=1 µ(xi)1{µ(xi)∈Ik}∑n
i=1 1{µ(xi)∈Ik}

??
≈

∑n
i=1 Yi 1{µ(xi)∈Ik}∑n
i=1 1{µ(xi)∈Ik}

.

• Local Regression (Loader (1999)): Binning is a discretized version of a local
regression (smoother) that regresses the responses Y from the price cohorts µ(x)

locfit(Y ∼ µ(x), alpha = 0.1, deg = 2).
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Lift plots for empirical auto-calibration tests
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Isotonic recalibration (1/2)

• Isotonic regression is a non-parametric way to restore the auto-calibration property;
a mathematical argument follows in Eq. (1), below.

Isotonic regression solves the following optimization problem (for positive weights wi)

m̂ = argmin
m=(m1,...,mn)>∈Rn

n∑
i=1

wi (Yi −mi)
2
,

subject to mk ≤ mj ⇐⇒ µ(xk) ≤ µ(xj).

• Isotonic regression preserves the ordering in µ(xi)
n
i=1. This requires that the first

regression function µ(·) provides (approximately) the correct ordering.
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Isotonic recalibration (2/2)

Isotonic regression solves the following optimization problem (for positive weights wi)

m̂ = argmin
m=(m1,...,mn)>∈Rn

n∑
i=1

wi (Yi −mi)
2
,

subject to mk ≤ mj ⇐⇒ µ(xk) ≤ µ(xj).

• Isotonic regression (Yi, m̂i)
n
i=1 = (Yi, m̂(xi))

n
i=1 is (empirically) auto-calibrated.

• Isotonic regression does not need any hyperparameter tuning.

• Isotonic regression is solved by the pool adjacent violators (PAV) algorithm;
see Ayer et al. (1955).

• Any strictly consistent loss L for mean estimation gives the same solution m̂.
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Isotonic recalibration: step function
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• Isotonic regression: natural (optimal) binning without hyperparameter tuning.

• May over-fit at both ends: merge smallest and largest bins.
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Isotonic regression and signal-to-noise ratio
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Isotonic regression under low signal-to-noise ratio

• Insurance data typically has a low signal-to-noise ratio.

• Theorem (W.–Ziegel, 2023). The expected number of steps in the isotonic (step)
regression function is increasing in the signal-to-noise ratio.

• In low signal-to-noise ratio cases: isotonic regression leads to a low complexity
partition of the covariate space

Xk := {x; m̂(x) = mk},

where mk are the different values of the isotonic regression step function.
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Isotonic recalibration: explainability
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This neural network regression function results in 23 different values mk of the
isotonic regression function ⇒ explainability through partition (Xk)23k=1.
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Attribution to individual covariate components
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• Covariate space decomposition into 23 different values (Xk)23k=1.

• No hyperparameters involved, only isotonic property is used.
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Partition of feature space
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• Score decomposition
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More on auto-calibration

• The true regression function µ∗ is auto-calibrated.

• There are (infinitely) many auto-calibrated regression functions:
Choose a measurable function x 7→ g(x), the following is auto-calibrated

µg(x) := E [Y | g(x)].

• In particular, the following is auto-calibrated

µrc(x) := E [Y |µ(x)]. (1)

• The simplest auto-calibrated price is the homogeneous one µ0 := E[Y ].

• For an increasing sequence of information sets Ft ⊂ Ft+1, we can generate an
increasing set (in convex order) of auto-calibrated prices.
This reflects a way of constructing a martingale.
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Murphy’s score decomposition

• Murphy (1973) proposed a score decomposition for analyzing (binary) meteorology
forecasts, see also Semenovich–Dolman (2020). (Only) recently, this has been
generalized to arbitrary responses by Pohle (2020) and Gneiting–Resin (2020).

• We have Murphy’s score decomposition

E
[
(Y − µ(x))2

]
= UNC− DSC + MSC,

with uncertainty, discrimination (resolution) and miscalibration, respectively,

UNC = E
[
(Y − E[Y ])

2
]

= Var (Y ) ≥ 0,

DSC = E
[
(Y − E[Y ])

2
]
− E

[
(Y − µrc(x))

2
]
≥ 0,

MSC = E
[
(Y − µ(x))2

]
− E

[
(Y − µrc(x))

2
]
≥ 0.

• This holds for any strictly consistent loss function L for mean estimation.
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• Conclusions
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Concluding remarks

• Estimation should be based on strictly consistent loss functions; Gneiting (2011).

• Bregman divergences are the only strictly consistent loss functions for mean
estimation, Savage (1971) and Gneiting (2011).

• Any regression function should be auto-calibrated for insurance pricing.

• Isotonic recalibration restores the auto-calibration property (empirically).

• A low signal-to-noise ratio leads to a low complexity isotonic recalibrated function.

• Murphy’s score decomposition gives a useful tool for model analysis.

• Model selection with Gini indices should only be done under auto-calibration.
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